
Scientific Technical Review, 2024,Vol.74,No.2,pp.23-31 23

doi: 10.5937/OTEH2402023T

Application of Screw Theory and its Implementation in Python for
Controlling a Niryo One Manipulator

Vuk Todorović 1)
Milan Blagojević 1)

Nikola Nešić 1)

The representation of a robot’s configuration can be diverse, each with its advantages and disadvantages. In this paper, we

approach the problem using screw theory, which states that all rigid-body motion can be represented with a rotation and

translation along a screw axis. Using this as a basis, we’ll be tackling the inverse kinematic problem of robots, which lacks

standardized ways of being determined, unlike the forward kinematics problem. With that in mind, here we will show a

combined approach of the analytic and numerical way of solving the inverse kinematic problem on a Niryo One robotic

manipulator. The analytic solution is derived by simplifying the robot’s structure and then using those results as initial

guesses for the Newton-Raphson numerical method which may produce up to 8 possible solutions. The theoretical foundation

is then implemented using the Python programming language after which the solution is sent to the robot via a Niryo One

ROS API – pyniryo.

Key words: screw theory, inverse kinematics, Paden-Kahan subproblems, Newton-Raphson method , Python, Niryo One.

Presented at the 11th International Scientific Conference on Defensive Technologies, Tara, Serbia, 9-11 October 2024.
1) Faculty of Technical Sciences, University of Pristina in Kosovska Mitrovica
 Correspondence to: Vuk Todorović; e-mail: vuk.todorovic01@gmail.com

Introduction

N the modern age, robotics is gaining an ever-increasing
role in shaping modern life, hence why innovations are
increasingly more directed towards this interdisciplinary

scientific field. The structure of robots is complex and both
individual and connected elements can significantly affect the
whole structure and function of the mechanism. This is in
favor of the fact that it is increasingly difficult to study one
aspect of the robot's structure independently from the rest.
Still, it is relatively easy to see how a dependent unit can
affect the rest of the system and perform an analysis of its
impact.

The essence of this paper lies in screw theory and its use
for the analysis and synthesis of robot mechanics, as well as
its application in controlling a Niryo One manipulator
through the Python programming language and its publicly
available libraries.

The work begins in the second chapter with some basic
considerations that need to be taken into account, along with a
theoretical movement model which we will follow and
implement in an experiment.

In the third chapter, we get to the heart of this paper. After
a brief overview of the task of determining a robot's inverse
kinematics, we review the most important specifications of
the Niryo One robot. In addition, the structure of the robot is
displayed, the position of its joints, the type of communication
and protocol, and pyniryo is specified as the Python library
that allows us to apply ROS (Robot Operating System) from a
high level of abstraction for controlling the robot. At the end,
the Paden-Kahan subproblems and Newton-Raphson

method are explained as they will be implemented to solve
the inverse kinematics of the robot at the end of the chapter.

An experiment showing the operation of the robot and the
application of the previous theory is presented in the fourth
chapter.

The mechanics presented have been compiled together in
the Python library by Lynch and Park [4]. Based on that, the
authors have also developed a more refined library along with
the code from the experiment and a more extensive version of
this paper [1].

Niryo one manipulator

 Basic Considerations

Niryo Robotics is a startup from France that designs and
manufactures industrial robots, more precisely those robots
are intended for personal and educational use purposes and
the price is significantly lower than the average industrial
robot whose price ranges between 20,000$ and 200,000$ [2].
The robot model used in this paper is from Niryo Robotics.

Apart from the open source software [7], the advantage of
this robot is that the whole documentation can be found online
for free at their website [6] and at GitHub [7].

 Theoretical Movement Model

To showcase the proposed algorithm that this paper
presents, in Table. 2.1 we have shown the planned sequental
movements that the robot will perform.

I

mailto:vuk.todorovic01@gmail.com

24 V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR …

Table 2.1. Niryo One theoretical movement model with coordinates
in the robots space frame

Actuation Transformation matrix

1. Starting
position

(calculated from
pyniryo [7])

3

3

0,540 0 0,841

0 1 0

0,841 0 0,

9

540 119

1

0

3

,

,

5

0

2

0

9

0 0 0

1 0 9

0

1

−

−

 
 
 
 −

 







2. Approach
above the object

3

3

3

0 0 1 148

0 1 0 148

1 0 0

10

10

10150

0 0 0 1

−

−

−

 
 

− 
 −
 
  







3. Descent to the
object

3

3

3

0 0 1 148

0 1 0 148

1 0 0

10

10

1088

0 0 0 1

−

−

−

 
 

− 
 −
 
  







4. Grip the object N/A

5. Lift the object
Same as 2. Approach above the

object

6. Approach
above the objects
destination

3

3

3

0 0 1 148

0 1 0 148

1 0 0 1

0

10

10

50

0 0 1

10

−

−

−

 
 
 
 −
 
  







7. Descent to the
objects
destination

3

3

3

0 0 1 148

0 1 0 148

1 0 0

0

10

1

188

0 0 1

0

0

−

−

−

 
 
 
 −





 




 

8. Release the
object

N/A

9. Ascent from
the object

Same as 6. Approach above the
objects destination

10. Return to the
start

Same as 1. Starting position

Robot Mechanics

The approach with which we’ll explore robot mechanics
is based on screw theory which states that all rigid body
motion can be interpreted as a rotation and a translation
along a screw axis resulting in a helicoid trajectory.

For the interested reader, an extensive resource is
available at [3, 5] for screw theory while in this paper we’ll
only be using the results from those sources.

The main issue we will be discussing here is the inverse
robot kinematics problem for our 6 degrees of freedom
(DOF) [2, 8] robot. That is to say, given a homogeneous

transformation matrix (3)SET find the corresponding

joint actuation angles nθ ,

 ()f =T θ . (1)

The inverse kinematics problem may not always have a
closed-form analytical solution or the solution is not
favorable for usage in practical situations. Typically for 6
DOF, there are a finite number of solutions while for robots
with more than 6 DOF, there are usually infinitely many
solutions.

On the other hand, there are numerical methods that, if
the initial guess is sufficient, will always converge to a valid
solution if it exists. The problem is, how do we ensure
convergence? This can be achieved by:

•Starting the robot's motion from a known
configuration and slowly changing the end-effector's
goal configuration with the frequency of the
calculation,

•Use an approximate analytical solution as the initial
guess.

This paper tries to achieve exactly the second point, find
an approximate analytical solution, and use that as an initial
guess for the numerical method. This is represented as
Algorithm 2.

 Technical Specifications

The robot's technical characteristics are available in
Table 3.1. The joints and their position are given in Fig. 3.1.

Table 3.1. Niryo One technical specifications where the range of
rotation of the actuators are from the Niryo One ROS API – pyniryo
and the rest from [2, 7, 8]

Specification Value

Mechanical specifications

Degrees of Freedom 6

Weight 3,3 kg

Max Reach 440 mm

Max Payload 0,5 kg

Repeatability 0,5 mm

Materials Aluminium, PLA (3D
printed)

Actuators 5 steppers and 2 servos

End effector – Gripper 1

Weight 70 g

Length (gripper closed) 80 mm

Max opening width 27 mm

Picking distance from end-
effector base

60 mm

Actuators range of rotation

Joint 1 175,00000 175,00000 − 

Joint 2 109,44000 ,67000036 − 

Joint 3 79,89000 ,96000089 − 

Joint 4 174,76000 175,00000 − 

V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR 25

Joint 5 100,00000 110,01000 − 

Joint 6 144,96000 144,96000 − 

Electrical specifications

Power Supply 11V 6A

Power Consumption 60W

Hardware Arduino Mega, Raspberry Pi
3

Joint sensor Magnetic sensor

Ports 4 USB, Ethernet

Software specifications

Communication Ethernet, Wi-Fi, Bluetooth,
USB

User interface Web app, Android app, iOS
app, Gamepad

Programming interface ROS, APIs, source code

Figure 3.1. Niryo Ones The position of the joints and their respective

axis of rotation where iJ denotes the i -th joint

Because we can connect and manage our robot in several
ways (see Table 3.1), we must explicitly state which way
will be used for our application:

•Communication – Ethernet TCP/IP connection,

•Control interface – Niryo One ROS API, i.e. pyniryo.
Ethernet is a reliable and relatively fast way of

communication that requires a wired connection (in our case
wireless is unnecessary anyway), while pyniryo is the latest
available Python ROS API for the Niryo One. We could
also apply directly ROS but that would introduce additional
complexity and is not the aim of this paper. The
development environment used is VS Code while the Python
version used is 3.12.5.

Paden-Kahan Subproblems

The Paden-Kahan (PD) subproblems are a set of
subproblems, that depend on the geometry of the robot, and
that may be systemically used for determining a closed-form
analytical solution for the inverse kinematics of the
manipulator.

Before examining the subproblems, one more thing to
note is that for each solution related to a particular joint

angle i , a valid solution is also

 2 ,i k k  =   . (2)

This may turn out to be important in cases where a
robot's joint has an asymmetric joint range limit, e.g, let’s
say we have a robot whose joint ranges are

((90), (225), (120)), 90    − − − but the

solution vector (45 , 50 , 90)1  −=  θ is out of range,

meaning that we must change our solution and say that

)210(45 , , 90−= −  θ .

With that in mind, we’ll explore how the subproblems are
formulated, their solution, and the conditions under which a
solution exists.

Subproblem 1. Rotation about a single axis

Problem. Let S be a zero-pitch screw axis 0h = and
3, p q two points, find the corresponding rotation angle

 such that

 []e  =p q
S . (3)

Solution. From the given subproblem it is evident that it
corresponds to a rotation of the point p to the point q

around the screw axis S and we are looking for the angle 

that satisfies this transformation.

The solution to this subproblem is given as

 atan2((' '), ' ') =   ω u v u vS (4)

where:

 ' proj= −
ω

u u u
S

, (5)

 ' proj= −
ω

v v v
S

, (6)

 = −u p r , (7)

 = −v q r , (8)

and 3r is any point of the screw axis S . To determine
this point, we’ll first examine the parametric definition of
the screw axis

ω̂

ˆ ˆω ωh−


   
= =  

 +   

ω

v r

S

S

S

and considering that our screw axis is zero-pitch, we may
write

 []= −v ω rS S (9)

and thus

 †[]= −r ω vS S
. (10)

While we may be able to solve for r analytically, it will
always have an infinite amount of solutions (consider how
the vector r points to a line), which may pose a problem
since we’ll need an explicit solution to implement it
programmatically.

26 V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR …

The subproblem has a solution when the following
relations are satisfied:

|| || || || || || || ||

 = 

 =  =

ω u ω v

u v u v

S S
. (11)

In the case when =p q , there are an infinite amount of

solutions to this subproblem.

Subproblem 2. Rotation about two subsequent axes

Problem. Let 1S and 2S be zero-pitch screw axes

1 2 0h h= = that intersect and 3, p q two points, find the

corresponding pair of rotation angles 1 and 2 such that

 1 2 21[] []
e e

 
=p q

S S . (12)

Solution. This subproblem corresponds to two
subsequent rotations of the point p to the point q , first

around the screw axis 1S for an angle of 1 and then around

the screw axis 2S for an angle of 2 .

In the case when the two screw axes overlap,

 2 2

1 2 1 21 2 || |||| ||=  = = S S S S S S (13)

then we can rewrite (12) as

 121 1 1 1 11 2 22[] [] [] [] []()
e e e e e

     − −
= = =p p p q

S S S S S (14)

that lends itself to PD 1 if we say that

 1 2  =  . (15)

All combinations of the two angles 1 and 2 that satisfy

(15) can be used, meaning that we may simplify this further
by saying that one angle equals zero.

When the screw axes intersect at a point, (12) can be
rewritten as a set of two equations

2

1

2

1[]

[]

e

e



−

=

=

p c

q c

S

S
 (16)

such that they may be solved as PD 1 if we say that

 = +c z r (17)

and 3r is the point of intersection between the two

screw axes 1S and 2S . Since, in the general case, if we use

(10), we’ll get two different points 1 2r r , there is a need to

use another method for determining r . The property of the
vector cross-product  =a a 0 allows us to write out (9) as

a linear combination

 [] []() , 1, 2,i i i i − = − − = =ω r ω r ω vS S S S (18)

thus,

21 2 21 1 == + +r r ω r ωS S (19)

and this can be solved as a linear system

21

1

1 2

2





 
 −   =

 
−ω ω r rS S . (20)

If the system has a solution, then the screw axes intersect
at the point defined by (19), otherwise the axes do not
intersect and this subproblem has no solution.

The other variable from (17) is defined as:

21 21

()  + += z ω ω ω ωS S S S , (21)

 1 2 2 1

1 2

2

)(

()

(

1

)


  −

 −


=

ω ω ω u ω v

ω ω

S S S S

S S

, (22)

 1 2 1 2

1 2

2

)(

()

(

1

)


  −

 −


=

ω ω ω v ω u

ω ω

S S S S

S S

, (23)

 1 2

1 2

2 2

2

2|| 2)

||

|| (

||

  


− 
= 

− −



u ω ω

ω ω

S S

S S

, (24)

where u and v are defined by (7) and (8) respectively.

The subproblem can either have two pairs of solutions,

one pair of solutions, or no solutions for the angles 1 and

2 . Two pairs of solutions are present when 0  , and one

pair when (13) holds or 0 = . No solutions exist when the

square root from (24) is less than zero or certain conditions
aren’t met. The conditions for using this subproblem, in
addition to the condition that the screw axes intersect, are
(the implication of these conditions follows from (11) for
(16)):

2

1 1

2

2 2 2

,

,

.|| || || || || ||=

 = 

=

 = ω u ω z

ω v ω z

u z v

S S

S S (25)

Subproblem 3. Rotation to a given distance

Problem. Let S be a zero-pitch screw axis 0h = ,
3, p q two points, and 0   a real number, find the

corresponding rotation angle  such that

 []|| ||e  =−q p
S . (26)

Solution. From the given subproblem it is evident that it
corresponds to rotating the point p such that after the

transformation, it is a distance of  from the point q .

In the case that 0 = , (26) transforms into (3),

i.e. PD 1

 [] [] []|| 0|| e e e  − =  − =  =q p q p 0 p q
S S S . (27)

When 0  then we have the usual case with the

solution given as

 2 2 2

atan2((),)

|| || ||
arccos

|| | |

||

|2 | | |





   =   

   + −
  

  

ω u v u v

u v

u v

S

 (28)

where

 2 2 |' ()| = −  −ω p qS
 (29)

and the rest (, , , , u v u v r) are defined by (5)÷(10).

Based on (28) we notice that this subproblem may have
two or one solution based on the angle defined by the arccos
argument. It is also evident that we don’t have a solution if
the arccos argument is outside of the function's domain.
There may also be no valid solutions even if (28) yields a
proper value which occurs if (26) is not satisfied.

Newton-Raphson Numerical Method

The numerical method that we’ll be analyzing here is the
Newton-Raphson method used for nonlinear root-finding.

The algorithm for the method, defined in the { }s frame, is

V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR 27

stated in Algorithm 1.

Algorithm 1. Newton-Raphson numerical method in the robots space

frame

Niryo One Mechanics

The manipulator can be simplified and graphically
represented as shown in Fig. 3.2 where we have a space

frame { }s and body frame { }b set to standard positions

with our robot model (which is per the pyniryo interface).

Figure 3.2. Kinematic diagram of the Niryo One manipulator

The zero configuration of the Niryo One manipulator is
therefore

57

14 8

1 0 0

0 1 0 0

0 0 1

0 0 0 1

L

L L−


 
 
 =
 

 

M

where the values of the link lengths are given in Table 3.2.
along with the definitions of the robots screw axes.

Table 3.2. Niryo One important kinematic values based on Fig. 3.1 and
Fig. 3.2

Index
number

Link length L in

mm

Screw axis in the { }s

frame – S

1 103 (0, 0, 1, 0, 0, 0)

2 80 12(0, 1, 0, , 0, 0)L−

3 210 13(0, 1, 0, , 0, 0)L−

4 30 14(1, 0, 0, 0, , 0)L

5 41.5 14 56(0, 1, 0, , 0,)L L− −

6 180 14 8(1, 0, 0, 0, , 0)L L−

7 23.7 /

8 5.5 /

As mentioned, we’ll determine the inverse kinematics of
the robot numerically, while using an approximate
analytical solution as an initial guess analytically. Note that

if we make an approximation and say that 8 0L  , our

manipulator closely resembles the structure of a PUMA
robot for which the analytical solution is given in [5].
Therefore we will, by analogy, determine an approximate
analytical solution to the PUMA robot.

We start from the expression of the direct kinematics in

the { }s frame according to our robot model

[]

6

1

i i

sf

i

e


=

= M T
S

,

and multiply both sides by 1−
M to separate the unknowns

from the known variables

[] 1

1

6

1

:i i

f

i

se


=

− == T M T
S

 (30)

where

57

1

8 14

1 0 0

0 1 0 0

0 0 1

0 0 0 1

L

L L

−

−

=
−



 
 
 
 

 

M . (31)

In four steps we will determine all of the joint angles.

Step 1 (solve for 3)

Multiply both sides with a vector that points to the point of

intersection of the axes 1 2 3, andS S S

3

[]

456 1 456

1

i i

i

e


=

= q Tq
S

 (32)

where the vector of intersection is defined as

56

456

14

0

L

L

 
 
 
  

=q . (33)

The previous relation (32) is a consequence of the fact

28 V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR …

that if a vector qS points to any point on a screw axis S ,

then the following holds true

 []e  =q q
S

S S
. (34)

Next, we subtract both sides of (32) with the vector

pointing to the intersection of the screw axes 1S and 2S to

get

 3 321 1 2 [][] []

456 12 1 456 12()e e e
 

− = −q q Tq q
SS S (35)

where the vector 12q is defined as

 12

12

0

0

L

 
 
 
  

=q . (36)

Taking into account that homogeneous transformations
preserve distances, norming both sides of (35) gives us

 3 3[]

456 12 1 456 12|| || || || :e
 − = − =q q Tq q

S
 (37)

which can be solved using the results from PD 3.

Step 2 (solve for 1 2and )

Considering that, preceding this step, we have determined

3 , we come back to (32) and after manipulating the

relation we get

1

3 31

2

1

1

2 2

2

[][] []

456 1 456

[] [] (1) (1)

()e e e

e e

 

 

=

=

q Tq

q p

SS S

S S
 (38)

where

 3 3[](1)

456: e


=q q
S

, (39)

 (1)

1 456:=p Tq , (40)

which can be solved using PD 2.

Step 3 (solve for 4 5and )

After determining the first three angles which play a
crucial role in the position of the robot’s end-effector, we
come back to (30) and separate the variables which are and
aren’t known

 5 5 6 6 3 34 4 2 12 1[[[[[[

1

]]]]]]
e e e e e e

    − − −
= T

S S SS S S
 (41)

and multiplying both sides with the position vector 6q of

the screw axis 6S we get an equation that can be solved

using PD 2

 5 54 4 [[

6 2 6

]

6

]
:e e


= =q T q p

SS
 (42)

where the position vector, which mustn't be equal to 456q , is

defined as

6

6 6 56

14

0 , \{ }

q

Lq

L

 
 


 
  

=q (43)

and the matrix 2T

 3 3 1 12 2[[[

2 1

]]]
: e e e

  − − −
=T T

S S S
. (44)

Step 4 (solve for 6)

The last remaining angle can be calculated by separation in
(30)

 6 6

5
[]

6 6 1

1

exp([])i i

i

e
 − −

=

= − T
S

S (45)

and then multiply both sides by any vector (2)
q which

doesn’t point to any point on the screw axis 6S

 6 6

5
[] (2) (2) (2)

6 6 1

1

exp([]) :i i

i

e
 − −

=

= − =q Tq p
S

S (46)

where

 (2) 3

6\{ }q q . (47)

At the end of our analysis, we emphasize that the
maximum number of different angle coordinates which
achieve the same desired configuration is 8 due to the
multiplicity of solutions in the equations (37), (38), and (42)
. This can be represented by a graph as in Fig. 3.3.

Figure 3.3. Graf representing PD approximate solutions where the

nodes represent the angle coordinates and the branches lead to different
sets of solutions

The graf from Fig. 3.3 represents the most general case
when all 8 solutions exist. Most often, there are less than 8
solutions. This is because either the robot cannot reach a
certain end-effector position and orientation with all 8 robot
configurations or the algorithm converges to a certain
configuration which would require the robot's actuators to
move outside of their joint limit (see Table 3.1 for joint
limits). If we have no PD solutions, then the desired
configuration is outside the robot's workspace, otherwise it
is inside.

Based on this chapter intended for determining Niryo
One manipulator mechanics, an open-source Python library
has been made and can be found on Github [1]. A larger
portion of the library is related to general open-chain
manipulators while only a single module is specialized for
the Niryo One robot.

At the end, a graphical representation is shown on
Algorithm 2.

V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR 29

Algorithm 2. Niryo One inverse kinematic algorithm. The sets PDΘ and NRΘ group the different valid solutions after applying the PD subproblems and

Newton-Raphson method respectively

 Experiment

Using the aforementioned method of determining Niryo
One's inverse kinematics, we’ll conduct an experiment that
will serve as some validity to the effectiveness of this
approach.

Problem. Displace the provided object using the Niryo

One manipulator. The starting and final location of the

object, measured in the robots { }s frame, are

(148, 148, 0)mm− and (148,148, 0)mm respectively.

Solution. The code used is available on the same GitHub
page as the code for the entire library [1]. The robot is
displayed doing its task in Fig. 4.1.

a)

b)

c)

30 V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR …

d)

e)

f)

g)

h)

i)

Fig. 4.1. Experiment: controlling the Niryo One manipulator. The experiment starts after the robot's calibration and ends when the robot returns to its
starting position (which isn't shown here): a) Position 1 – starting position of the robot; b) Position 2 – approach above the object; c) Position 3 –

descent to the object; d) Position 4 – gripping the object; e) Position 5 – lifting the object; f) Position 6 – approach above the objects destination; g)
Position 7 – descent to the objects destination; h) Position 8 – release the object; i) Position 9 – ascent from the object.

Conclusion

Integration of various synergistic elements of robotic
systems at a high theoretical and practical level can serve as a
good example of engineering spirit, which was just performed
in the work. Efficient calculation, clear formulation, easy
implementation, lack of singularities, and the experiment on
the Niryo One robot are evident indicators of the advantages
of applying screw theory.

Another approach for determining a robot's inverse
kinematics is based on the classic elimination theory from
algebraic geometry, which is available at [5]. Python is a good
choice for a fast and relatively simple implementation that can
be refined at [1], to make the source code even more
complete, robust, and efficient. In addition, the
implementation in the C++ programming language would be
ideal for a version of the source code that would be more
suitable for the modern requirements of practical robotics.
Before that, of course, it is also possible to delve deeper into
the possibilities of ROS to more fully exploit the potential of
the Niryo One robot.

Appendix: Mathematical Notation

The following notation is used:

•{ }s – space frame;

•{ }b – body frame;

• kn i

n

i k
L L

=
= – sum of iL link lengths;

•   3

1 2 3

T

a a a ax x x= x – vector. If a subscript is

present, then it defines the coordinate frame (e.g.
coordinate frame a in this case) of the vector;

• 3â / || ||a a a = a a – unit vector of its bolded

equivalent;

•  0 0 0
T

=0 – the 3 1 zero vector;

• 3, , a b a b – vector dot product;

• 3[] , , = a b a b a b – vector cross product (the []

operator is explained below);

• 3ˆ ˆ(bpr)b ,oj ,=  
b
a a a b – vector projection of a

onto b ;

• † m nA – the Moore-Penrose pseudoinverse;

• (3)ab SOR – Rotation matrix from the special

orthogonal group. If a subscript is present, then it
defines the orientation of the second letter frame in
the first letter frame (e.g. orientation of the frame

{ }b in { }a in this case). Otherwise, the matrix

represents an operator;

•

3 2

3

3 1

2 1

0

0 (3),

0

[]

x x

x x o

x x

s

 
 

=  
 
 

−

−

− 

x x – vector skew-

symmetric matrix representation;

• (,) (3)ab ab ab SE= T R p – homogeneous trans-

formation matrix from the special Euclidean group.
If a subscript is present, then it defines the
orientation and position of the second letter frame in
the first letter frame (e.g. position and orientation of

the frame { }b in { }a in this case). Otherwise, the

matrix represents an operator;

V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR 31

•

6 3, , ,

(|| || 1) (|| || 0 || || 1)

a

a a

a

a a a

a

 
=  

=



=

  

=

ω
ω v

v

ω ω v

S

S S

S

S S S

S
 – screw axis. If a

subscript is present, then it defines the coordinate
frame (e.g. coordinate frame a in this case) of the

screw axis;

•
[]

(3)
0

[]
T

se
 

=  
 

ω v

0

S S
S – an (3)se representation of

the screw axis, equivalent to []x explained before;

•
a

a

a a
 

= =  
  

ω

v

V

V

V S – twist. If a subscript is present, then

it defines the coordinate frame (e.g. coordinate
frame a in this case) of the twist;

•)[] [] (3se= V S – an (3)se representation of the

twist, equivalent to []x explained before;

• (3)SEM – zero/home configuration of an open chain

manipulator in the { }s frame;

• 6)(n

b

J θ – the Jacobian of a manipulator defined in

the { }b frame;

• []e  = +=x Tx Rx p
S – an abuse of notation where Tx

and []e 
x

S are shorthand for +Rx p , and also

[] 3, (,),e  = = T T R p x
S ;

•

a

0,arctan

ar

a n

ctan 0,

arct n 0,

,

0,
2

0,
2

0

0

0

ta 2(,)

0

0

undefined 0

,

x

x

x

y

x

y
y

x

y
y

x

y

y

y

y

x

x

x

x

x y









  
  

 
  

+    
 

  
 −   
  

  




 












 =



=

=

− =

=



– a special function that is similar to the arctan(/)y x

function but with a larger domain of (], − .

 References

[1] Library containing the source code for robot mechanics. URL:
https://github.com/VuckoT/mehanika_robota.

[2] Kickstarter Niryo One project. URL:
https://www.kickstarter.com/projects/niryo/niryo-one-an-open-source-
6-axis-robotic-arm-just-f.

[3] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics,
Planning, and Control. Cambridge University Press, 2017.

[4] Modern Robotics Python library. URL:
https://github.com/NxRLab/ModernRobotics/tree/master/packages/Pyt
hon.

[5] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A
Mathematical Introduction to Robotic Manipulation. CRC Press, 1994.

[6] Niryo One website. url: https://niryo.com/.

[7] Niryo Robotics on GitHub. URL: https://github.com/NiryoRobotics.

[8] Niryo Robotics. Niryo One Mechanical Specifications. 2018.

Received: 01.07.2024.
Accepted: 10.09.2024.

Primena teorije zavrtnja i njena implementacija u Pajtonu za
upravljanje Niryo One manipulatorom

Položaj, odnosno, konfiguracija robota i njegova promena se može predstaviti na različite načine, od kojih svaki ima svoje

prednosti i mane. U tu svrhu, u ovom radu se koristi teorija zavrtnja, koja kaže da se svako kretanje krutog tela može

predstaviti jednom rotacijom i translacijom duž ose zavrtnja. Koristeći ovo kao osnovu, urađena je inverzna kinematika

robota. Dok je procedura rešavanja direktne kinematike standardizovana, kod inverzne kinematike to nije slučaj. S obzirom

na to, ovde je pokazan kombinovani pristup analitičkog i numeričkog načina rešavanja problema inverzne kinematike

robotskog manipulatora Niryo One. Analitičko rešenje je izvedeno pojednostavljivanjem strukture robota, a zatim su ti

rezultati korišćeni kao početno rešenje za Njutn-Rapsonovu numeričku metodu koja može da pronađe i do 8 validnih rešenja

realnog robotskog manipulatora. Teorijska osnova se zatim implementira korišćenjem programskog jezika Python, nakon

čega se rešenje šalje robotu preko Niryo One ROS API-a – pyniryo.

Ključne reči: teorija zavrtnja, inverzna kinematika, Paden-Kahan podproblemi, Njutn-Rapsonova metoda, Pajton, Niryo One.

