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The representation of a robot’s configuration can be diverse, each with its advantages and disadvantages. In this paper, we 

approach the problem using screw theory, which states that all rigid-body motion can be represented with a rotation and 

translation along a screw axis. Using this as a basis, we’ll be tackling the inverse kinematic problem of robots, which lacks 

standardized ways of being determined, unlike the forward kinematics problem. With that in mind, here we will show a 

combined approach of the analytic and numerical way of solving the inverse kinematic problem on a Niryo One robotic 

manipulator. The analytic solution is derived by simplifying the robot’s structure and then using those results as initial 

guesses for the Newton-Raphson numerical method which may produce up to 8 possible solutions. The theoretical foundation 

is then implemented using the Python programming language after which the solution is sent to the robot via a Niryo One 

ROS API – pyniryo. 
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Introduction  

N the modern age, robotics is gaining an ever-increasing 
role in shaping modern life, hence why innovations are 
increasingly more directed towards this interdisciplinary 

scientific field. The structure of robots is complex and both 
individual and connected elements can significantly affect the 
whole structure and function of the mechanism. This is in 
favor of the fact that it is increasingly difficult to study one 
aspect of the robot's structure independently from the rest. 
Still, it is relatively easy to see how a dependent unit can 
affect the rest of the system and perform an analysis of its 
impact. 

The essence of this paper lies in screw theory and its use 
for the analysis and synthesis of robot mechanics, as well as 
its application in controlling a Niryo One manipulator 
through the Python programming language and its publicly 
available libraries. 

The work begins in the second chapter with some basic 
considerations that need to be taken into account, along with a 
theoretical movement model which we will follow and 
implement in an experiment. 

In the third chapter, we get to the heart of this paper. After 
a brief overview of the task of determining a robot's inverse 
kinematics, we review the most important specifications of 
the Niryo One robot. In addition, the structure of the robot is 
displayed, the position of its joints, the type of communication 
and protocol, and pyniryo is specified as the Python library 
that allows us to apply ROS (Robot Operating System) from a 
high level of abstraction for controlling the robot. At the end, 
the Paden-Kahan subproblems and Newton-Raphson 

method are explained as they will be implemented to solve 
the inverse kinematics of the robot at the end of the chapter. 

An experiment showing the operation of the robot and the 
application of the previous theory is presented in the fourth 
chapter. 

The mechanics presented have been compiled together in 
the Python library by Lynch and Park [4]. Based on that, the 
authors have also developed a more refined library along with 
the code from the experiment and a more extensive version of 
this paper [1]. 

Niryo one manipulator 

 Basic Considerations 

Niryo Robotics is a startup from France that designs and 
manufactures industrial robots, more precisely those robots 
are intended for personal and educational use purposes and 
the price is significantly lower than the average industrial 
robot whose price ranges between 20,000$ and 200,000$ [2]. 
The robot model used in this paper is from Niryo Robotics. 

Apart from the open source software [7], the advantage of 
this robot is that the whole documentation can be found online 
for free at their website [6] and at GitHub [7]. 

 Theoretical Movement Model 

To showcase the proposed algorithm that this paper 
presents, in Table. 2.1 we have shown the planned sequental 
movements that the robot will perform. 
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Table 2.1. Niryo One theoretical movement model with coordinates 
in the robots space frame 

Actuation Transformation matrix 

1. Starting 
position 

(calculated from 
pyniryo [7]) 

3

3

0,540 0 0,841

0 1 0

0,841 0 0,

9

540 119

1

0

3

,

,

5

0

2

0

9

0 0 0

1 0 9

0

1

−

−

 
 
 
 −

 







 

2. Approach 
above the object 

3

3

3

0 0 1 148

0 1 0 148

1 0 0

10

10

10150

0 0 0 1

−

−

−

 
 

− 
 −
 
  






 

3. Descent to the 
object 

3

3

3

0 0 1 148

0 1 0 148

1 0 0

10

10

1088

0 0 0 1

−

−

−

 
 

− 
 −
 
  






 

4. Grip the object N/A 

5. Lift the object 
Same as 2. Approach above the 

object 

6. Approach 
above the objects 
destination 

3

3

3

0 0 1 148

0 1 0 148

1 0 0 1

0

10

10

50

0 0 1

10

−

−

−

 
 
 
 −
 
  






 

7. Descent to the 
objects 
destination 

3

3

3

0 0 1 148

0 1 0 148

1 0 0

0

10

1

188

0 0 1

0

0

−

−

−

 
 
 
 −





 




 

 

8. Release the 
object 

N/A 

9. Ascent from 
the object 

Same as 6. Approach above the 
objects destination 

10. Return to the 
start 

Same as 1. Starting position 

Robot Mechanics 

The approach with which we’ll explore robot mechanics 
is based on screw theory which states that all rigid body 
motion can be interpreted as a rotation and a translation 
along a screw axis resulting in a helicoid trajectory. 

For the interested reader, an extensive resource is 
available at [3, 5] for screw theory while in this paper we’ll 
only be using the results from those sources. 

The main issue we will be discussing here is the inverse 
robot kinematics problem for our 6 degrees of freedom 
(DOF) [2, 8] robot. That is to say, given a homogeneous 

transformation matrix (3)SET  find the corresponding 

joint actuation angles nθ , 

 ( )f =T θ . (1) 

The inverse kinematics problem may not always have a 
closed-form analytical solution or the solution is not 
favorable for usage in practical situations. Typically for 6 
DOF, there are a finite number of solutions while for robots 
with more than 6 DOF, there are usually infinitely many 
solutions. 

On the other hand, there are numerical methods that, if 
the initial guess is sufficient, will always converge to a valid 
solution if it exists. The problem is, how do we ensure 
convergence? This can be achieved by: 

•Starting the robot's motion from a known 
configuration and slowly changing the end-effector's 
goal configuration with the frequency of the 
calculation, 

•Use an approximate analytical solution as the initial 
guess. 

This paper tries to achieve exactly the second point, find 
an approximate analytical solution, and use that as an initial 
guess for the numerical method. This is represented as 
Algorithm 2. 

 Technical Specifications 

The robot's technical characteristics are available in 
Table 3.1. The joints and their position are given in Fig. 3.1. 

Table 3.1. Niryo One technical specifications where the range of 
rotation of the actuators are from the Niryo One ROS API – pyniryo 
and the rest from [2, 7, 8] 

Specification Value 

Mechanical specifications 

Degrees of Freedom 6  

Weight 3,3 kg  

Max Reach 440 mm  

Max Payload 0,5 kg  

Repeatability 0,5 mm  

Materials Aluminium, PLA (3D 
printed) 

Actuators 5 steppers and 2 servos 

End effector – Gripper 1 

Weight 70 g  

Length (gripper closed) 80 mm  

Max opening width 27 mm  

Picking distance from end-
effector base 

60 mm  

Actuators range of rotation 

Joint 1 175,00000 175,00000 −   

Joint 2 109,44000 ,67000036 −   

Joint 3 79,89000 ,96000089 −   

Joint 4 174,76000 175,00000 −   
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Joint 5 100,00000 110,01000 −   

Joint 6 144,96000 144,96000 −   

Electrical specifications 

Power Supply 11V 6A  

Power Consumption 60W  

Hardware Arduino Mega, Raspberry Pi 
3 

Joint sensor Magnetic sensor 

Ports 4 USB, Ethernet 

Software specifications 

Communication Ethernet, Wi-Fi, Bluetooth, 
USB 

User interface Web app, Android app, iOS 
app, Gamepad 

Programming interface ROS, APIs, source code 

 

 
Figure 3.1. Niryo Ones The position of the joints and their respective 

axis of rotation where iJ  denotes the i -th joint 

Because we can connect and manage our robot in several 
ways (see Table 3.1), we must explicitly state which way 
will be used for our application: 

•Communication – Ethernet TCP/IP connection, 

•Control interface – Niryo One ROS API, i.e. pyniryo. 
Ethernet is a reliable and relatively fast way of 

communication that requires a wired connection (in our case 
wireless is unnecessary anyway), while pyniryo is the latest 
available Python ROS API for the Niryo One. We could 
also apply directly ROS but that would introduce additional 
complexity and is not the aim of this paper. The 
development environment used is VS Code while the Python 
version used is 3.12.5. 

Paden-Kahan Subproblems 

The Paden-Kahan (PD) subproblems are a set of 
subproblems, that depend on the geometry of the robot, and 
that may be systemically used for determining a closed-form 
analytical solution for the inverse kinematics of the 
manipulator.  

Before examining the subproblems, one more thing to 
note is that for each solution related to a particular joint 

angle i , a valid solution is also 

 2 ,i k k  =   . (2) 

This may turn out to be important in cases where a 
robot's joint has an asymmetric joint range limit, e.g, let’s 
say we have a robot whose joint ranges are 

(( 90 ), ( 225 ), ( 120 )), 90    − − −  but the 

solution vector (45 , 50 , 90 )1  −=  θ  is out of range, 

meaning that we must change our solution and say that 

)210(45 , , 90−= −  θ . 

With that in mind, we’ll explore how the subproblems are 
formulated, their solution, and the conditions under which a 
solution exists. 

Subproblem 1. Rotation about a single axis 

Problem. Let S  be a zero-pitch screw axis 0h =  and 
3, p q  two points, find the corresponding rotation angle 

  such that 

 [ ]e  =p q
S . (3) 

Solution. From the given subproblem it is evident that it 
corresponds to a rotation of the point p  to the point q  

around the screw axis S and we are looking for the angle   

that satisfies this transformation. 

The solution to this subproblem is given as 

 atan2( ( ' '), ' ') =   ω u v u vS  (4) 

where: 

 ' proj= −
ω

u u u
S

, (5) 

 ' proj= −
ω

v v v
S

, (6) 

 = −u p r , (7) 

 = −v q r , (8) 

and 3r  is any point of the screw axis S . To determine 
this point, we’ll first examine the parametric definition of 
the screw axis 

 
ω̂

ˆ ˆω ωh−


   
= =  

 +   

ω

v r

S

S

S  

and considering that our screw axis is zero-pitch, we may 
write 

 [ ]= −v ω rS S  (9) 

and thus 

     †[ ]= −r ω vS S
. (10) 

While we may be able to solve for r  analytically, it will 
always have an infinite amount of solutions (consider how 
the vector r  points to a line), which may pose a problem 
since we’ll need an explicit solution to implement it 
programmatically.  
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The subproblem has a solution when the following 
relations are satisfied: 

 
|| || || || || || || ||

 = 

 =  =

ω u ω v

u v u v

S S
. (11) 

In the case when =p q , there are an infinite amount of 

solutions to this subproblem. 

Subproblem 2. Rotation about two subsequent axes 

Problem. Let 1S  and 2S  be  zero-pitch screw axes 

1 2 0h h= =  that intersect and 3, p q  two points, find the 

corresponding pair of rotation angles 1  and 2  such that 

 1 2 21[ ] [ ]
e e

 
=p q

S S . (12) 

Solution. This subproblem corresponds to two 
subsequent rotations of the point p  to the point q , first 

around the screw axis 1S  for an angle of 1  and then around 

the screw axis 2S  for an angle of 2 . 

In the case when the two screw axes overlap, 

 2 2

1 2 1 21 2 || |||| ||=  = = S S S S S S  (13) 

then we can rewrite (12) as 

 121 1 1 1 11 2 22[ ] [ ] [ ] [ ] [ ]( )
e e e e e

     − −
= = =p p p q

S S S S S  (14) 

that lends itself to PD 1 if we say that 

 1 2  =  . (15) 

All combinations of the two angles 1  and 2  that satisfy 

(15) can be used, meaning that we may simplify this further 
by saying that one angle equals zero. 

When the screw axes intersect at a point, (12) can be 
rewritten as a set of two equations 

 
2

1

2

1[ ]

[ ]

e

e



−

=

=

p c

q c

S

S
 (16) 

such that they may be solved as PD 1 if we say that 

 = +c z r  (17) 

and 3r  is the point of intersection between the two 

screw axes 1S  and 2S . Since, in the general case, if we use 

(10), we’ll get two different points 1 2r r , there is a need to 

use another method for determining r . The property of the 
vector cross-product  =a a 0  allows us to write out (9) as 

a linear combination 

   [ ] [ ]( ) , 1, 2,i i i i − = − − = =ω r ω r ω vS S S S   (18) 

thus, 

 
21 2 21 1 == + +r r ω r ωS S  (19) 

and this can be solved as a linear system 

 
21

1

1 2

2





 
 −   =

 
−ω ω r rS S . (20) 

If the system has a solution, then the screw axes intersect 
at the point defined by (19), otherwise the axes do not 
intersect and this subproblem has no solution. 

The other variable from (17) is defined as: 

 
21 21

( )  + += z ω ω ω ωS S S S , (21) 

 1 2 2 1

1 2

2

)(

( )

(

1

)


  −

 −


=

ω ω ω u ω v

ω ω

S S S S

S S

, (22) 

 1 2 1 2

1 2

2

)(

( )

(

1

)


  −

 −


=

ω ω ω v ω u

ω ω

S S S S

S S

, (23) 

 1 2

1 2

2 2

2

2|| 2 )

||

|| (

||

  


− 
= 

− −



u ω ω

ω ω

S S

S S

, (24) 

where u  and v  are defined by (7) and (8) respectively. 

The subproblem can either have two pairs of solutions, 

one pair of solutions, or no solutions for the angles 1  and 

2 . Two pairs of solutions are present when 0  , and one 

pair when (13) holds or 0 = . No solutions exist when the 

square root from (24) is less than zero or certain conditions 
aren’t met. The conditions for using this subproblem, in 
addition to the condition that the screw axes intersect, are 
(the implication of these conditions follows from (11) for 
(16)): 

 

2

1 1

2

2 2 2

,

,

.|| || || || || ||=

 = 

=

 = ω u ω z

ω v ω z

u z v

S S

S S  (25) 

Subproblem 3. Rotation to a given distance 

Problem. Let S  be a zero-pitch screw axis 0h = , 
3, p q  two points, and 0    a real number, find the 

corresponding rotation angle   such that 

 [ ]|| ||e  =−q p
S . (26) 

Solution. From the given subproblem it is evident that it 
corresponds to rotating the point p  such that after the 

transformation, it is a distance of   from the point q . 

In the case that 0 = , (26) transforms into (3), 

i.e. PD 1 

    [ ] [ ] [ ]|| 0|| e e e  − =  − =  =q p q p 0 p q
S S S . (27) 

When 0   then we have the usual case with the 

solution given as 

 2 2 2

atan2( ( ), )

|| || ||
arccos

|| | |

||

|2 | | |





   =   

   + −
  

  

ω u v u v

u v

u v

S

 (28) 

where 

 2 2 |' ( )| = −  −ω p qS
 (29) 

and the rest ( , , , , u v u v r ) are defined by (5)÷(10). 

Based on (28) we notice that this subproblem may have 
two or one solution based on the angle defined by the arccos 
argument. It is also evident that we don’t have a solution if 
the arccos argument is outside of the function's domain. 
There may also be no valid solutions even if  (28) yields a 
proper value which occurs if (26) is not satisfied. 

Newton-Raphson Numerical Method 

The numerical method that we’ll be analyzing here is the 
Newton-Raphson method used for nonlinear root-finding. 

The algorithm for the method, defined in the { }s  frame, is 
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stated in Algorithm 1. 

 
Algorithm 1. Newton-Raphson numerical method in the robots space 

frame 

Niryo One Mechanics 

The manipulator can be simplified and graphically 
represented as shown in Fig. 3.2 where we have a space 

frame { }s  and body frame { }b  set to standard positions 

with our robot model (which is per the pyniryo interface). 

 
Figure 3.2. Kinematic diagram of the Niryo One manipulator 

The zero configuration of the Niryo One manipulator is 
therefore 

 

57

14 8

1 0 0

0 1 0 0

0 0 1

0 0 0 1

L

L L−


 
 
 =
 

 

M  

where the values of the link lengths are given in Table 3.2. 
along with the definitions of the robots screw axes. 

 
Table 3.2. Niryo One important kinematic values based on Fig. 3.1 and 
Fig. 3.2 

Index 
number 

Link length L  in 

mm  

Screw axis in the { }s  

frame – S  

1 103 (0, 0, 1, 0, 0, 0)  

2 80 12(0, 1, 0, , 0, 0)L−  

3 210 13(0, 1, 0, , 0, 0)L−  

4 30 14(1, 0, 0, 0, , 0)L  

5 41.5 14 56(0, 1, 0, , 0, )L L− −  

6 180 14 8(1, 0, 0, 0, , 0)L L−  

7 23.7 / 

8 5.5 / 

As mentioned, we’ll determine the inverse kinematics of 
the robot numerically, while using an approximate 
analytical solution as an initial guess analytically. Note that 

if we make an approximation and say that 8 0L  , our 

manipulator closely resembles the structure of a PUMA 
robot for which the analytical solution is given in [5]. 
Therefore we will, by analogy, determine an approximate 
analytical solution to the PUMA robot. 

We start from the expression of the direct kinematics in 

the { }s  frame according to our robot model 

 
[ ]

6

1

i i

sf

i

e


=

= M T
S

, 

and multiply both sides by 1−
M  to separate the unknowns 

from the known variables 

 
[ ] 1

1

6

1

:i i

f

i

se


=

− == T M T
S

 (30) 

where 

 

57

1

8 14

1 0 0

0 1 0 0

0 0 1

0 0 0 1

L

L L

−

−

=
−



 
 
 
 

 

M . (31) 

In four steps we will determine all of the joint angles. 

Step 1 (solve for 3 ) 

Multiply both sides with a vector that points to the point of 

intersection of the axes 1 2 3, andS S S  

 
3

[ ]

456 1 456

1

i i

i

e


=

= q Tq
S

 (32) 

where the vector of intersection is defined as 

 

56

456

14

0

L

L

 
 
 
  

=q . (33) 

The previous relation (32) is a consequence of the fact 
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that if a vector qS  points to any point on a screw axis S , 

then the following holds true 

 [ ]e  =q q
S

S S
. (34) 

Next, we subtract both sides of (32) with the vector 

pointing to the intersection of the screw axes 1S  and 2S  to 

get 

 3 321 1 2 [ ][ ] [ ]

456 12 1 456 12( )e e e
 

− = −q q Tq q
SS S  (35) 

where the vector 12q  is defined as 

 12

12

0

0

L

 
 
 
  

=q . (36) 

Taking into account that homogeneous transformations 
preserve distances, norming both sides of (35) gives us 

 3 3[ ]

456 12 1 456 12|| || || || :e
 − = − =q q Tq q

S
 (37) 

which can be solved using the results from PD 3. 

Step 2 (solve for 1 2and  ) 

Considering that, preceding this step, we have determined 

3 , we come back to (32) and after manipulating the 

relation we get 

 
1

3 31

2

1

1

2 2

2

[ ][ ] [ ]

456 1 456

[ ] [ ] (1) (1)

( )e e e

e e

 

 

=

=

q Tq

q p

SS S

S S
 (38) 

where 

 3 3[ ](1)

456: e


=q q
S

, (39) 

 (1)

1 456:=p Tq , (40) 

which can be solved using PD 2. 

Step 3 (solve for 4 5and  ) 

After determining the first three angles which play a 
crucial role in the position of the robot’s end-effector, we 
come back to (30) and separate the variables which are and 
aren’t known 

 5 5 6 6 3 34 4 2 12 1[ [ [[ [ [

1

] ] ]] ] ]
e e e e e e

    − − −
= T

S S SS S S
 (41) 

and multiplying both sides with the position vector 6q  of 

the screw axis 6S  we get an equation that can be solved 

using PD 2 

 5 54 4 [[

6 2 6

]

6

]
:e e


= =q T q p

SS
 (42) 

where the position vector, which mustn't be equal to 456q , is 

defined as 

 

6

6 6 56

14

0 , \{ }

q

Lq

L

 
 


 
  

=q  (43) 

and the matrix 2T  

 3 3 1 12 2[ [ [

2 1

]] ]
: e e e

  − − −
=T T

S S S
. (44) 

Step 4 (solve for 6 ) 

The last remaining angle can be calculated by separation in 
(30) 

 6 6

5
[ ]

6 6 1

1

exp( [ ] )i i

i

e
 − −

=

= − T
S

S  (45) 

and then multiply both sides by any vector (2)
q  which 

doesn’t point to any point on the screw axis 6S  

 6 6

5
[ ] (2) (2) (2)

6 6 1

1

exp( [ ] ) :i i

i

e
 − −

=

= − =q Tq p
S

S  (46) 

where 

 (2) 3

6\{ }q q . (47) 

At the end of our analysis, we emphasize that the 
maximum number of different angle coordinates which 
achieve the same desired configuration is 8 due to the 
multiplicity of solutions in the equations (37), (38), and (42)
. This can be represented by a graph as in Fig. 3.3.  

 
Figure 3.3. Graf representing PD approximate solutions where the 

nodes represent the angle coordinates and the branches lead to different 
sets of solutions 

The graf from Fig. 3.3 represents the most general case 
when all 8 solutions exist. Most often, there are less than 8 
solutions. This is because either the robot cannot reach a 
certain end-effector position and orientation with all 8 robot 
configurations or the algorithm converges to a certain 
configuration which would require the robot's actuators to 
move outside of their joint limit (see Table 3.1  for joint 
limits). If we have no PD solutions, then the desired 
configuration is outside the robot's workspace, otherwise it 
is inside. 

Based on this chapter intended for determining Niryo 
One manipulator mechanics, an open-source Python library 
has been made and can be found on Github [1]. A larger 
portion of the library is related to general open-chain 
manipulators while only a single module is specialized for 
the Niryo One robot. 

At the end, a graphical representation is shown on 
Algorithm 2. 
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Algorithm 2. Niryo One inverse kinematic algorithm. The sets PDΘ  and NRΘ  group the different valid solutions after applying the PD subproblems and 

Newton-Raphson method respectively 

 

 

 Experiment 

Using the aforementioned method of determining Niryo 
One's inverse kinematics, we’ll conduct an experiment that 
will serve as some validity to the effectiveness of this 
approach. 

 
Problem. Displace the provided object using the Niryo 

One manipulator. The starting and final location of the 

object, measured in the robots { }s  frame, are 

(148, 148, 0)mm−  and (148,148, 0)mm  respectively. 

Solution. The code used is available on the same GitHub 
page as the code for the entire library [1]. The robot is 
displayed doing its task in Fig. 4.1. 

 

 

 
a) 

 
b) 

 
c) 



30  V. TODOROVIĆ, etc.: APPLICATION OF SCREW THEORY AND ITS IMPLEMENTATION IN PYTHON FOR … 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

 
i) 

Fig. 4.1. Experiment: controlling the Niryo One manipulator. The experiment starts after the robot's calibration and ends when the robot returns to its 
starting position (which isn't shown here): a) Position 1 – starting position of the robot; b) Position 2 – approach above the object; c) Position 3 – 

descent to the object; d) Position 4 – gripping the object; e) Position 5 – lifting the object; f) Position 6 – approach above the objects destination; g) 
Position 7 – descent to the objects destination; h) Position 8 – release the object; i) Position 9 – ascent from the object. 

Conclusion 

Integration of various synergistic elements of robotic 
systems at a high theoretical and practical level can serve as a 
good example of engineering spirit, which was just performed 
in the work. Efficient calculation, clear formulation, easy 
implementation, lack of singularities, and the experiment on 
the Niryo One robot are evident indicators of the advantages 
of applying screw theory. 

Another approach for determining a robot's inverse 
kinematics is based on the classic elimination theory from 
algebraic geometry, which is available at [5]. Python is a good 
choice for a fast and relatively simple implementation that can 
be refined at [1], to make the source code even more 
complete, robust, and efficient. In addition, the 
implementation in the C++ programming language would be 
ideal for a version of the source code that would be more 
suitable for the modern requirements of practical robotics. 
Before that, of course, it is also possible to delve deeper into 
the possibilities of ROS to more fully exploit the potential of 
the Niryo One robot. 

Appendix: Mathematical Notation 

The following notation is used: 

•{ }s  – space frame; 

•{ }b  – body frame; 

• kn i

n

i k
L L

=
=  – sum of iL  link lengths; 

•   3

1 2 3

T

a a a ax x x= x  – vector. If a subscript is 

present, then it defines the coordinate frame (e.g. 
coordinate frame a  in this case) of the vector; 

• 3â / || ||a a a = a a  – unit vector of its bolded 

equivalent; 

•  0 0 0
T

=0  – the 3 1  zero vector; 

• 3, , a b a b  – vector dot product; 

• 3[ ] , , = a b a b a b  – vector cross product (the [ ]  

operator is explained below); 

• 3ˆ ˆ( bpr )b ,oj ,=  
b
a a a b  – vector projection of a  

onto b ; 

• † m nA  – the Moore-Penrose pseudoinverse; 

• (3)ab SOR  – Rotation matrix from the special 

orthogonal group. If a subscript is present, then it 
defines the orientation of the second letter frame in 
the first letter frame (e.g. orientation of the frame 

{ }b  in { }a  in this case). Otherwise, the matrix 

represents an operator; 

•

3 2

3

3 1

2 1

0

0 (3),

0

[ ]

x x

x x o

x x

s

 
 

=  
 
 

−

−

− 

x x – vector skew-

symmetric matrix representation; 

• ( , ) (3)ab ab ab SE= T R p  – homogeneous trans-

formation matrix from the special Euclidean group. 
If a subscript is present, then it defines the 
orientation and position of the second letter frame in 
the first letter frame (e.g. position and orientation of 

the frame { }b  in { }a  in this case). Otherwise, the 

matrix represents an operator; 
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•

6 3, , ,

(|| || 1) (|| || 0 || || 1)

a

a a

a

a a a

a

 
=  

=



=

  

=

ω
ω v

v

ω ω v

S

S S

S

S S S

S
 – screw axis. If a 

subscript is present, then it defines the coordinate 
frame (e.g. coordinate frame a  in this case) of the 

screw axis; 

•
[ ]

(3)
0

[ ]
T

se
 

=  
 

ω v

0

S S
S  – an (3)se  representation of 

the screw axis, equivalent to [ ]x  explained before; 

•
a

a

a a
 

= =  
  

ω

v

V

V

V S  – twist. If a subscript is present, then 

it defines the coordinate frame (e.g. coordinate 
frame a  in this case) of the twist; 

• )[ ] [ ] (3se= V S  – an (3)se  representation of the 

twist, equivalent to [ ]x  explained before; 

• (3)SEM  – zero/home configuration of an open chain 

manipulator in the { }s  frame; 

• 6)( n

b

J θ  – the Jacobian of a manipulator defined in 

the { }b  frame; 

• [ ]e  = +=x Tx Rx p
S  – an abuse of notation where Tx  

and [ ]e 
x

S  are shorthand for +Rx p , and also 

[ ] 3, ( , ),e  = = T T R p x
S ;  

•

a

0,arctan

ar

a n

ctan 0,

arct n 0,

,

0,
2

0,
2

0

0

0

ta 2( ,  )

0

0

undefined 0

,

x

x

x

y

x

y
y

x

y
y

x

y

y

y

y

x

x

x

x

x y









  
  

 
  

+    
 

  
 −   
  

  




 












 =



=

=

− =

=



  

– a special function that is similar to the arctan( / )y x  

function but with a larger domain of ( ], − . 
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Primena teorije zavrtnja i njena implementacija u Pajtonu za 
upravljanje Niryo One manipulatorom  

Položaj, odnosno, konfiguracija robota i njegova promena se može predstaviti na različite načine, od kojih svaki ima svoje 

prednosti i mane. U tu svrhu, u ovom radu se koristi teorija zavrtnja, koja kaže da se svako kretanje krutog tela može 

predstaviti jednom rotacijom i translacijom duž ose zavrtnja. Koristeći ovo kao osnovu, urađena je inverzna kinematika 

robota. Dok je procedura rešavanja direktne kinematike standardizovana, kod inverzne kinematike to nije slučaj. S obzirom 

na to, ovde je pokazan kombinovani pristup analitičkog i numeričkog načina rešavanja problema inverzne kinematike 

robotskog manipulatora Niryo One. Analitičko rešenje je izvedeno pojednostavljivanjem strukture robota, a zatim su ti 

rezultati korišćeni kao početno rešenje za Njutn-Rapsonovu numeričku metodu koja može da pronađe i do 8 validnih rešenja 

realnog robotskog manipulatora. Teorijska osnova se zatim implementira korišćenjem programskog jezika Python, nakon 

čega se rešenje šalje robotu preko Niryo One ROS API-a – pyniryo. 

Ključne reči: teorija zavrtnja, inverzna kinematika, Paden-Kahan podproblemi, Njutn-Rapsonova metoda, Pajton, Niryo One. 


