Stabilité des systèmes linéaires continus singuliers et des systmes discrets temporels descriptifs à délai temporel fini: Tableau des résultats – Première partie, continus Dragutin Debeljković Sreten Stojanović Tamara Nestorović
Dans ce papier on a donné les conditions suffisantes pour la stabilité pratique et pour la stabilité sur l’intervalle temporelle finie chez les systèmes linéaires singuliers continus à délai temporel pur. Lorsque le concept de la stabilité sur l’intervalle temporelle finie est considéré, ces nouvelles conditions, indépendantes du délai, ont été dérivées à l’aide de l’approche basée sur les fonctions quasi de Lyapunov et leurs caractéristiques dans le sous espace des conditions initiales consistantes. Dans le cas général ces fonctions: a) ne doivent pas être positives dans l’espace entier de l’état b)leurs dérivées ne doivent pas être négatives le long de la trajectoire. Considérant la stabilité pratique , l’approche citée ci-dessus est combinée et appuyée par la théorie classique de Lyapunov dans le but d’assurer la stabilité pratique attrayante. Mots clés: système linéaire, système continu, système descriptif, système singulier, système à délai, système discret, stabilité de système
|