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Determination of the Transition Probabilities for the Interacting 
Multiple Model Probabilistic Data Association Estimator 

Zvonko Radosavljević, MSc (Eng)1) 

The problem of state estimation for Markovian switching systems with an unknown transition probability matrix 
(TPM) of the embedded Markov chain governing the switching is presented in this paper. Under the assumption of 
constant TPM, an approximate recursion of the TPM’s posterior probability density function is obtained. The 
exponential distribution of TPM is proposed and tested with the recursive algorithm for the Minimum Mean-Square 
Error (MMSE) estimation. The calculated initial TPM is incorporable into a typical Interacting Multiple Model with 
Probabilistic Data Association (IMMPDA) estimation scheme. Moreover, simulation results of TMP-adaptive 
algorithms for a maneuvering target tracking is shown. The results obtained test the scenario with two aircraft: 
military and civilian. The simulation shows that the proposed computation method increases the target tracking 
efficiency. The drawback of the simulation is that only one single target is assumed. The paper reports the 
preliminary results of an ongoing study and further investigation is under way. 
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Introduction 
ARGET tracking is a very rapidly developing area. It is 
a complex procedure, containing many algorithms. For 

tracking a single maneuvering target in clatter, the 
IMMPDA algorithm is proposed in this paper. 
Maneuvering target tracking refers to the problem of state 
estimation of the target trajectory subjected to abrupt 
changes [1]. The standard Kalman filter (KF) with a single 
motion model is limited in performance for such problems 
due to ineffective responding in dynamics changes as the 
target maneuvers. Recently the adaptive estimation 
techniques approaches in maneuvering motion are 
categorized as state augmentation approaches, adaptive 
adjustment of filter parameters and multiple models (MM) 
approaches [2]. Designing a best set of filters requires prior 
knowledge about target motion. This is earlier, maximum 
acceleration and sojourn times in motion modes. The IMM 
estimate algorithm is the most efficient and cost-effective 
tool for tracking highly maneuvering targets [3, 4]. The 
results of simulations cited in many papers, reveal a very 
good performance of this algorithm in terms of track 
confirmation and maintenance. In the Multiple Model 
(MM) estimation the Transition Probability Marix (TPM) is 
almost always assumed to be known. Thus it is highly 
desirable to have algorithms which can identify the TPM 
recursively during the course of processing measurement 
data so as to allow on-line adaptation of the MM state 
estimation. A new generation of MM estimators assumes 
that the TPM governing the mode jumps is known. 
However, it is practically unknown. It is very difficult to 
determine appropriate TPM quantities and identify a 
Markov transition law that optimally fits the unknown 
target motion. Fortunately, the performance of MM 
estimation is not very sensitive to the choice of the TPM 

[5]. Also, Li discuss how to establish attribute association 
probabilities, which are possible to fuse with the association 
probabilities computed by the IMMPDA [6].  

The paper is organized as follows. Section 2 provides a 
brief description of the IMMPDA algorithm. It gives the 
basic relationship and expressions between the variable and 
the parameters. A proposed algorithm which commutates 
transition probabilities in a new manner is presented in 
Section 3. The simulation results, referring to the target 
maintenance problem are presented in Section 4. Finally, 
the concluding remarks are presented in Section 5. 

IMM estimator with the probabilistic data 
association filter 

The IMMPDA filter is an algorithm for target tracking 
and association, which supports simultaneously track 
initiation, confirmation and deletion. A brief description of 
IMMPDA filter is has been presented in this section [7]. 
The case of two objects is considered: the single target and 
the clatter flying at the same altitude. The problem 
considered is that of tracking a single target in the clutter, 
which retrieves two measurements fall in the validation 
gate. The linear hybrid dynamical target state model is 
given by the following [8]: 

 ( 1) ( ) ( )j j j j jk k v k+ = +x F x G   1, 2,...,j n=  (1) 

 ( ) ( ) ( )y k k w k= +Hx  (2) 

where j is the ordinal number of the model, n is the total 
number of the model, x  is the state, y is the measurement, 
n is the total number of the filter models, F, G and H are 
known matrices, ( )kν  and ( )w k  are the independent zero-

T 
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mean white Gaussian noise processes with covariance 
( )Q k  and )(kR  respectively. At the time k a set of ( )m k  

measurements { } ( )

1
( ) ( )

m k
i i

Y k y k
=

=  is detected, where 

each measurement either originates from one of the n 
known linear measurement models or is a false detection. 
The sequences v(k) are mutually independent and 
uncorrelated with the process noise w(k). The Interacting 
Multiple Model (IMM) estimator is used to predict the 
current state of the target using two or more different 
models. A Markov chain transition matrix is used to specify 
the probability that the target is one of the models of 
operations. However, the IMM algorithm runs filters in 
parallel, each with an appropriately weighted combination 
of state estimates as mixed initial conditions. The 
Probabilistic Data Association Filter (PDA) is a suboptimal 
Bayesian algorithm that associates probabilistically all the 
validated measurements to the target of interest [7]. The 
PDA method associates each validated measurement 
probabilistic to the estimated track. The case with two 
measurements in each radar scan is considered. The 
prediction computation is necessary for each target-
originated measurement, but only one measurement is the 
target. The PDA method assumes that there is only one 
target of interest the track of which has already been 
initialized. The basic assumption is that the PDA filter state 
is normally distributed according to the latest estimates and 
the covariance matrix. The PDA uses a weighted average of 
all the measurements falling inside the validation gate of 
the target. Next, consider that the modal state 

{ }1 2( ) , ,..., nM k M M M∈ =M , ( )i iM M k=  is a Markov chain 
with initial and transition probabilities respectively:  

 { }(0) (0)j jP M µ=  (3) 

 { }( 1) ( ) , , 1,2,...,j i ijP M k M k i j Nπ+ = =  (4) 

where ( )iM k  stands for the target obeying the i-th state 
model a the time k: ( ) , 1, 2,...,iM k i i n= = . The procedure 
of IMMPDA consists of the following five steps. 

Step 1: The initial state estimation on condition that the 
target moves according to the q-th model is given by: 

 

0

1

ˆ ( 1 1)

ˆ ( 1 1) ( 1 1), 1,2,...,

q

n

q

x k k

x k k k k q n
ξ

ξ
ξ

π
=

− − =

− − − − =∑  (5) 
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1
0

0

1 1 1 1

ˆ ˆ( 1 1) [ ( 1 1) ( 1 1)]
ˆ ˆ[ ( 1 1) ( 1 1)]'

n
q

q

q

q

P k k k k

P k k x k k x k k
x k k x k k

ξ
ξ

ξ ξ

ξ

π
=

− − = − −

⎧ ⎫− − + − − − − −
⎨ ⎬− − − − −⎩ ⎭

∑
 (6) 

where 0ˆ ( 1 1)qx k k− − , 0 ( 1 1)qP k k− −  is the mixed initial 
state and its covariance, respectively, for the filter matched 
to the mode ( ), 1, 2,..., .qm k q n= , ˆ ( 1 1)x k kξ − − ,  
 

( 1 1)P k kξ − −  are the state and the covariance, 
respectively, for the filter matched to the model 

, 1, 2,...,nξ ξ = .  

 

1

( 1)
( 1 1)

( 1)

q
q n

q

p k
k k

p k

ξ ξ
ξ

ξ ξ
ξ

µ
π

µ
=

−
− − =

−∑
 (7) 

qpξ  is the Markov chain Transition Probabilities Matrix 
and ( 1)kξµ − are the model probabilities computed at the 
time 1k − .  

Step 2: Next, the likelihood function is calculated as a 
joint probability density function of the innovations: 

 
( )

( ) 1

1

( ) [ ( ) ( )] ( )( )

m k
m kD G

q j
j

P Pf k b k e k V km k
− +

=

= +∑  (8) 

where  

 ( )(1 )1( ) [ ;0; ( )], ( ) ( )
D G

j j
G D G

m k P Pe k N r S k b kP P P V k
−= =  (9) 

and [ . ; . , .]N  Gaussian distributed process, DP -probability 
of detection, GP -probability that all measurements falling in 
the validation region, ( )V k -validation region, ( )m k -
number of measurements falling in the validation region, 

( )S k  - innovation covariance. 
Step 3: The association probabilities are to be calculated, 

by the following expression: 

 ( )

1

( )
( ) , 1,..., ( )

( ) ( )

j
j m k

j
j

e k
k j m k

b k e k

β

=

= =

+∑
 (10) 

 0 ( )

1

( )( )

( ) ( )
m k

j
j

b kk

b k e k

β

=

=

+∑
 (11) 

The combined innovation is defined as a weighted sum 
of the ( )m k  measurements innovations: 

 
( )

1

( ) ( ) ( )
m k

j j
j

r k k r kβ
=

=∑  (12) 

Step 4: It is the IMM step. The model probability is 
updated as: 

 1

1 1

( ) ( 1)

( )
( ) ( 1)

n

q q

q n n

q q
q

f k p k

k
f k p k

ξ ξ
ξ

ξ ξ
ξ

µ

µ
µ

=

= =

−

=

−

∑
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 (13) 

Step 5: The combined model-conditioned state estimate 
and the covariance are obtained according to the following 
expression: 

 
1

ˆ ˆ( ) ( ) ( )
n

q
q

q

x k x k kµ
=

=∑  (14) 

 { }
1

ˆ ˆ ˆ ˆ( ) ( ) ( ) [ ( ) ( )][ ( ) ( )]'
n

q q q
q

q

P k k P k x k x k x k x kµ
=

= + − −∑  (15) 
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Appropriation of the Markov chain transition 
probability matrix 

The IMMPDA algorithm consists of N  filters - one for 
each state model. During the tracking process, which is a 
discrete time process, the number of filters is kept constant. 
In practice, the IMMPDA method usually uses three 
Kalman filters. A homogeneous Markov chain matrix ∏  
represents conditional model probabilities of transition 
from the model i  to the model j . Let us consider now the 
state estimation problem for the above hybrid system model 
without the presumed knowledge of the transition 
probability matrix, given by the following equations [10, 
11]: 

 [ ]1 2 nπ π π ′Π = L  (16) 

where 1 1[ ]'i i iπ π π= L , 1, 2,...,i n= . The sum of 

elements of each row equals one 
1

( ) 1
n

ij
j

kπ
=

=∑ . Next, it is 

assumed that ∏  is an unknown random constant matrix 
with some given prior distribution defined over the simplex 
of valid TPMs. In such a Bayesian framework we formulate 
the following. The estimation objective: For 0,1, 2,...k =  
find recursively the posterior MMSE estimate 

( ) [ ]kk E zΠ = Π  from: the previous time-step model 
probabilities  

 1( 1) [ ( 1),..., ( 1)]Nk k kµ µ ′− = − −µ  (17) 

 1( 1) { ( 1) }k
i ik P m k Yµ −− = −  (18) 

Assuming that it is most likely that the target keeps the 
current state model (does not change the way it moves), the 
diagonal elements of Markov chain matrix are the largest. 
Again, when the target exerts maneuver, accuracy of the 
position estimation is decreased. The observation of the 
IMM operational parameters which affects the maneuver is 
required. Generally, the transition probability depends on 
the expected sojourn time. The diagonal elements of the 
TPM may be approximated with the following expression 
[8]: 

 1( / ) 1 , / 1/ii i i
i

p T TTτ τ
τ

= − ≥  (19) 

where iτ  is the expected sojourn time of the i th− mode, 
iip is the probability of transition from i th− mode to the 

same mode and T  is the sampling interval. Let us 
denominate this function inverse function of the 

ratio 1i
T
τ ≥ . The non-diagonal elements, are calculated as: 

 }{ 1( / ) min , max( ,1 )/ii i i i
i

p T u l Tτ
τ

= −  (20) 

where 0.1il = and 0.9iu =  are the lower and upper limits 
respectively for the thi  model transition probability.  

The proposed method 
Actually, (19) is the first order Taylor polynomial 

expansion of the following function: 

 
1

( / )( / ) , / 1i T
ii i ip T e Tττ τ

−
= ≥  (21) 

The comparative graph of the inverse and exponential 
approximation of the transition probability function is 
given in Fig.1. 

 

Figure 1. Inverse and exponential approximation of the transition 
probability function 

The model of transition probability may be written as 

 
1

( ) ap a e
−

= ,    1 a≤ < + ∝  (22) 

where /ia Tτ= . The probability density function is 
computed by the total probability theorem. From the 
conditions  

( ) 1pdf x dx
+∝

−∝

=∫   

and 

0

lim( ( ) ) 1
a

a
pdf x dx

→∝
=∫   

it follows: 

 
1

0

( ) ( )
a

apdf x dx p a e
−

= =∫  (23) 

Next, from the previous conditions and after developing 
the exponential function, we obtain:  

 2 3
1 1 1( / ) 1 , / 1/ ( / ) ( / )ii i i

i i i
p T TT T T

τ ττ τ τ
= − − − − ≥L (24) 

Finally, if we stay at the third component, the diagonal 
elements of the TPM function are given by the: 

 21 1( / ) 1 ( )/ /ii i
i i

p T T Tτ
τ τ

= − −  (25) 

Thus, from the total probability theorem it follows 

1

1, 1,2,..., .
n

ij
j

p j n
=

= =∑  

and finally, 
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n n

i ii i

p k T

n T T

τ τ

τ τ
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= − ⋅ − ⋅ =

∑ ∑
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An upper overall equation (19) has a real positive 
solution; the discriminate of square equation (26) satisfies 
the following condition: 

 2
1 1

1 12 1
n n

i ii i

n
τ τ= =

≥ ⋅ − ⋅∑ ∑  (27) 

If iτ  satisfies , 1, 2,...,i T i nτ > = , the expected sojourn 
time of all n  modes is assumed to be known and satisfies 
the condition given by (15). 

The convergence 
The hybrid estimation algorithm converges 

exponentially under several conditions. The exponential 
convergence refers to an algorithm which correctly 
identifies the model probabilities in finite time and has a 
base-state estimate sequence with a unique mean and 
convergent covariance, and an estimation-error mean 
converging exponentially to a bounded set with a 
guaranteed rate. Consider the problem of mode-sequence 
identification, where it is defined [11]: 

 
,

1
2

2

1( ) ( 1)exp[ ]

lim

N
L

j i j i sj
i

k k
s j

sj L

k k Ac

Z Z
A

L

µ µ

σ

=

→∝

= Π − −

−
=

∑% %

 (28) 

where { }' ' '[( 1) 1], [( 1) 2],..., ( )k
j j j jZ z k L z k L z k L= − ⋅ + − ⋅ + ⋅  are the 

measurements at the L discrete times, 
( 1) 1, ( 1) 2,...,k L k L k L− ⋅ + − ⋅ + ⋅ , jm  - is the correct 

model over the block, s - stands for the true model, ,
L
i jΠ  

stands for the ( , ) thi j −  element of the L-th power of the 
transition probability matrix, c - is the sum of the 
numerators over 1, 2,...,i N= . For a hybrid system the 
weights ( )j kµ%  will converge and the true model s- has the 

largest steady-state value lim ( )k s kµ→∝ %  on condition that 
all mode transitions are possible but infrequent and the 
current model has the best fit to the data. Note that ( )j kµ%  
is an approximation of the following de facto mode 
probability in the Gaussian case:  

 
2

, 2
1

1( ) ( 1) exp
k kN
s jL

j i j i
i

Z Z
k kc L

µ µ
σ=

⎡ ⎤−
⎢ ⎥= Π − −
⎢ ⎥
⎣ ⎦

∑  (29) 

assuming no mode transition within the block, by replacing 
the exponential factor with its steady-state value as the 
block size increases. As such, the above results for ( )j kµ%  

hold approximately true for )(~ kjµ  which is meaningful if 

)(kjµ  is used as a fitness measure for an MM estimator. 

Simulation results  
The simulation results of the three IMMPDA models, in 

nearly constant velocity, gentle maneuvers and closely 
maneuvers are presented in this section. The performances 
of the implemented tracking filters and the corresponding 
neural network method are evaluated by Monte Carlo (MC) 
simulations over several representative test trajectories. The 
measure of performance is done using the Root Mean 
Square Error [12]:  

 2 2

1

( )

1 ˆ ˆ( ( ) ( )) ( ( ) ( ))
MCN

i i i i

MC i

RMSE k

k k k kN ξ ξ η η
=

=

− + −∑  (30) 

where ˆ ˆ( ), ( )i ik kξ η  are the position estimates (Cartesian 
coordinates) at the discrete time k, in MC  run i and 

( ), ( )i ik kξ η  are the measurement results.  

The target motion scenario 
The proposed algorithm was tested on an actual scenario 

which consisted of 80 frames of Track While Scan (TWS) 
radar data collection. Thesampling time interval is 5sT = . 
In order to test the efficiency of the proposed algorithm, 
two types of aircraft trajectories are formed. The first 
trajectory is with maneuver, and the second trajectory has 
no maneuver. The test trajectories are given in  Fig.2.  

 

Figue 2. The target and clatter trajectories  

The first trajectory-target is a fast moving military 
fighter 371m/sv = . The target performs four turn maneuvers 
with intensities of g, 2g, 5g, 2g  during the scans 10-28, 37-
45, 55-58, and 65-73, respectively. The second trajectory-
clatter is a civil aircraft with a constant velocity of v=240 
m/s, and the rectilinear trajectory. Both trajectories are in 
clatter accident. It has been found that the following two 
models: the constant velocity (CV) model and the 
coordinated turn model, provide an adequate and self-
contained model set for tracking purpose. If the state space 
vector is given by [ ]x x y y=x & &  then the state transition 
matrix, for the CV and for CT model, is given by : 

1 0 0
0 1 0 0
0 0 1
0 0 0 1

CV

T

F T

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦
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sin 1 cos1 0
0 cos 0 sin

1 cos sin0 1
0 sin 0 cos

CT

T T

T TF T T

T T

ω ω
ω ω
ω ω
ω ω

ω ω
ω ω

−⎡ ⎤−
⎢ ⎥
⎢ ⎥−= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

The random sequences { }( ), ( )k kν ϖ  are assumed to be 
white, zero-mean, Gaussian, and mutually independent 
with: 

 { }( ), ( ) ( )TE k k Q kν ν =  (31) 

 { }( ), ( ) ( )TE w k w k R k= . (32) 

Thus, we can specify the parameter of models as: 

 

4 3

3 2

4 3

3 2

0 04 2
0 02

0 0 4 2
0 0 2

i

T T

T T
Q q

T T

T T

⎡ ⎤
⎢ ⎥
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⎢ ⎥

= ⋅ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (33) 

where , 1, 2.iq i =  is the process noise covariance factor for 
both models ( )2 2

1 20.005 , 0.05q q= = . The measurement 

model is given by 1 0 0 0
0 0 1 0H ⎡ ⎤= ⎢ ⎥⎣ ⎦

 and 
2

2
0

0
x

y
R σ

σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

where ,x yσ σ  are the denoted standard deviations for the 
Cartesian coordinates, which both have a value of 200m. 
The detection probability is 0.9DP = . The expected 
sojourn times in the proposed scenario of aircraft motion of 
90 and 40 s, are assumed for M1 and M2 modes, 
respectively. The corresponding probabilities are p11=0.941, 
p22=0.875, p33=0.666. The choice of the non-diagonal 
elements of the Markov transition matrix depends on the 
switching characteristics among the various modes and is 
calculated according to the following:  

12 11 13 11

21 22 23 22

31 33 32 33

0.1(1 ) 0.0059, 0.9(1 ) 0.0941
0.1(1 ) 0.0125, 0.9(1 ) 0.1125
0.3(1 ) 0.0999, 0.7(1 ) 0.2331

p p p p
p p p p
p p p p

= − = = − =
= − = = − =
= − = = − =

  

The expected sojourn time in the maneuver and the 
sampling interval, is assumed to be known and we 
calculated the diagonal elements of the TPM [10]. The 
RMSE position versus the transition probability is given in 
Fig.3. Furthermore, the table of the transition of 
probabilities (interval 0.1-0.99) with two models, is given 
in Table 1. 

Table 1. 

P11 P22 
0.99 0.9     0.8     0.7     0.6     0.5     0.4     0.3     0.2     0.1 
0.99 359   452   505   545   580   613   645   677   710   752  
0.9 316   397   436   461   481   497   512   527   543    562 
0.8 294   359   386   403   415   425   435   445   457   471 
0.7 272   321   339   350   359   366   374   383   392   403 
0.6 245   280   293   302   310   318   326   334   343   352 
0.5 212   239   252   262   272   280   289   297   306   315 
0.4   178   204   220   233   243   252   261   270   279   288 

0.3 154   182   199   212   223   232   242   250   259    267 
0.2 150   171   186   199   209   218   227   236   244    252  
0.1 148   165   178   189   199   208   216   225   233   240 

The parallel diagrams of a proposed and of transition 
probability distribution are given in Fig.4. Finally, the 
overall RMSE Position for the inverse approximation of the 
transition probabilities function is 0.477, whence for the 
proposed exponential function it gives 0.462. 

 

Figure 3. RMSE of position for the inverse and exponential function of 
transition probabilities 

 

Figure 4. Distribution of the transition probability for the tested IMMPDA 
algorithm.  

Conclusion 
The IMMPDA state estimation method for a Markovian 

switching system with a unknown and exponential 
distributed transition probability matrix (TPM) is presented 
in this paper. Under the assumption of a constant but 
random TPM, an approximate recursion of the TPM’s new 
exponential posterior probability density function is 
obtained. Based on the multiple model, the IMM estimation 
methodology associated with the PDA filter, is designed 
and tested. The performance of the IMMPDA algorithms 
with the new TPM coefficient is evaluated and compared 
over different flight scenarios. The simulation results have 
shown that during maneuvers, the proposed new initial 
probabilities method, IMMPDA, provided substantially 
better tracking characteristics.  In this paper we have briefly 
illustrated the target tracking and data association procedure 
with the IMMPDA filter, for one target in the surrounding 
clatter. Data association is one of the most critical phases of 
the target tracking process. The simulations showed that 
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computing the attribute association probabilities is 
important to increase efficiency of the target tracking. 
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Određivanje verovatnoća prelaza za estimator stanja sa 
interaktivnim višestrukim modelom i pridruživanjem podataka po 

verovatnoći 

U radu je predstavljen estimator stanja sa Markovljevim lancem i nepoznatom matricom verovatnoće prelaza (TPM). 
Polazeći od pretpostavke konstantne ali slučajne TPM i koristeći rekurzivni postupak ažuriranja istih, dato je 
izraćunavanje elemenata TPM matrice na osnovu funkcije gustine raspodele. Predložena je eksponencijalna 
raspodela verovatnoće i testirana na rekurzivnom MMSE (Minimum Mean-Square Error) algoritmu za estimaciju. 
Izračunate inicijalne vrednosti TPM su uključene u Probabilistic Data Association (IMMPDA) estimator. Rezultati 
simulacija sa praćenjem manevrišućih vojnih i civilnih aviona su pokazali smanjenje greške praćenja. 
Pored toga, pokazan je značaj asocijativnih verovatnoća modela za tačnost predložene metode praćenja. U radu su 
dati preliminarni rezultati, a dalja istraživanja su u toku. 

Ključne reči: praćenje pokretnih ciljeva, hibridni sistemi, interaktivni višestruki model sa pridruživanjem podataka 
po verovatnoći, verovatnoće prelaza. 

Opredelenie vero}tnostej perehodov dl} ocenki sosto}ni} so 
vzaimodejstvuy|ej mnogokratnoj modelxy i s 

prisoedineniem dannwh po vero}tnosti 

V nasto}|ej rabote predstavlena ocenka sosto}ni} so cepxy Markova i so neizvestnoj matricej 
vero}tnosti perehodov (TRM). Ishod} iz predpolo`eni}, ~to posto}nna} no slu~ajna} TRM i polxzu}sx 
rekursivnwm  postupkom i sposobom privesti ih v por}dok,  proizvedën ras~ët &lementov TRM matricw na 
osnove funkcii plotnosti raspredeleni}. Predlo`eno &ksponencialxnoe raspredelenie vero}tnosti i 
ispwtano na rekursivnom MMSE (Minimum Mean-Square Error) algorifma dl} ocenki. Ras~islennwe 
ishodnwe veli~inw TRM vkly~enw v Probabilistic Data Association (IMMPDA) ocenku. Rezulxtatw 
imitacionnogo modelirovani} so soprovo`deniem voennwh i gra`danskih samolëtov v manevre pokazali 
umenx{enie o{ibki soprovo`deni}.  
Krome togo, pokazano i zna~enie soedinimwh vero}tnostej modelej dl} to~nosti predlo`ennogo metoda 
soprovo`deni}. V rabote privedenw predvaritelxnwe rezulxtatw, a dalxnej{ie issledovani} provod}ts} 
na dn}h. 

Kly~evwe slova: soprovo`denie celi, podvi`na} celx, gibridna} sistema, ocenka sosto}ni}, vero}tnostx 
perehoda, opredelenie vero}tnosti, cepx Markova. 
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Détermination des probabilités de la transition pour l’estimateur de 
l’état avec le modèle multiple interactif et l’association des données 

de probabilité 
L’estimateur de l’état avec la chaîne de Markov et la matrice inconnue de la probabilité de transition (TPM) font 
l’objet de ce travail. Partant de la supposition que la TPM est constante mais aléatoire et en utilisant le procédé re- 
cursif pour leur mise au point, on a donné l’estimation des éléments de la matrice, à la base de la fonction de la densité 
de distribution. On a proposé la distribution exponentielle de la probabilité qui a été testée pour l’algorithme recursif 
de l’estimation MMSE. Les valeurs initiales obtenues sont incorporées à Probabilistic Data Association (IMMPDA) 
estimator. Les résultats des simulations avec la poursuite des avions militaires et civils ont démontré la diminution de 
l’erreur de poursuite. A part cela, on a souligné l’importance des probabilités associatives du modèle quant à 
l’exactitude de la méthode proposée de poursuite. Ce travail contient les résultats préliminaires alors que les 
recherches continuent. 

Mots clés: poursuite de la cible, cible mobile, système hybride, estimateur de l’état, probabilité de la transition, 
détermination de la probabilité,chaîne de Markov. 

 
 


